organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

tert-Butyl 4-carbamoyl-3-methoxyimino-4-methylpiperidine-1-carboxylate

Juxian Wang, Mingliang Liu, Jue Cao and Yucheng Wang*

Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing 100050, People's Republic of China Correspondence e-mail: wyc9999@126.com

Received 22 October 2008; accepted 4 November 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.113; data-to-parameter ratio = 15.3.

The title compound, $C_{13}H_{23}N_3O_4$, was prepared starting from ethyl *N*-benzyl-3-oxopiperidine-4-carboxylate through a ninestep reaction, including hydrogenation, Boc (*tert*-butoxycarbonyl) protection, methylation, oximation, hydrolysis, esterification and ammonolysis. In the crystal structure, molecules are linked by intermolecular $N-H\cdots O$ hydrogen bonds to form a porous three-dimensional network with solvent-free hydrophobic channels extending along the *c* axis.

Related literature

For the synthesis and properties of quinolone derivatives, see: Ray *et al.* (2005); Ball *et al.* (1998); Bryskier (1997); De Sarro & De Sarro (2001); Anderson & Osheroff (2001); Dang *et al.* (2007); Wang *et al.* (2008).

Experimental

Crystal data $C_{13}H_{23}N_3O_4$ $M_r = 285.34$

Tetragonal, $I4_1/a$ a = 22.813 (2) Å c = 12.0742 (16) Å $V = 6283.8 (11) \text{ Å}^3$ Z = 16Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.957, \ T_{\rm max} = 0.963$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ 181 parameters $wR(F^2) = 0.113$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.19$ e Å⁻³2763 reflections $\Delta \rho_{min} = -0.12$ e Å⁻³

 $\mu = 0.09 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.049$

 $0.48 \times 0.46 \times 0.45 \text{ mm}$

16003 measured reflections

2763 independent reflections 1794 reflections with $I > 2\sigma(I)$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$N3-H3A\cdots O4^{i}$ $N3-H3B\cdots O3^{ii}$	0.86 0.86	2.11 2.34	2.9607 (18) 3.1334 (19)	173 153	
Symmetry codes: (i) $-x + 1$, $-y + 1$, $-z$; (ii) $y - \frac{1}{4}$, $-x + \frac{3}{4}$, $z - \frac{1}{4}$.					

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We are grateful to the National Research Center of Drug and Metabolite Analysis and the Pharmacology Laboratory of the Institute of Medicinal Biotechnology for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2260).

References

- Anderson, V. E. & Osheroff, N. (2001). Curr. Pharm. Des. 7, 337–353.
 Ball, P., Tilloston, G. & Fernald, A. (1998). Expert Opin. Investig. Drugs, 7, 761–783.
 Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
 Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
 Bryskier, A. (1997). Expert Opin. Investig. Drugs, 6, 1227–1245.
- Dang, Z., Yang, Y. & Ji, R. (2007). Bioorg. Med. Chem. Lett. 17, 4523-4526.
- De Sarro, A. & De Sarro, G. (2001). Curr. Med. Chem. 8, 371-384.
- Ray, S., Pathak, S. R. & Chaturvedi, D. (2005). Drugs Future, 30, 161-180.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, X. Y., Guo, Q. & Wang, Y. C. (2008). Acta Pharmacol. Sin. 43, 819-827.

Acta Cryst. (2008). E64, o2294 [doi:10.1107/S1600536808036106]

tert-Butyl 4-carbamoyl-3-methoxyimino-4-methylpiperidine-1-carboxylate

J. Wang, M. Liu, J. Cao and Y. Wang

Comment

Quinolones, a class of synthetic antibacterial compounds based on a 4-quinolone skeleton, have been the landmark discovery in the treatment of bacterial infections in both community and hospital setting (Ray *et al.*, 2005; Ball *et al.*, 1998; Bryskier, 1997). The most intensive structural variations have been carried out on the basic group at the C-7 position, partially due to the ease of their introduction through a nucleophilic aromatic substitution reaction on the corresponding halide. Piperazine, aminopyrolidine and their derivatives have been the most successfully employed side chains, as evidenced by the compounds currently on the market (De Sarro & De Sarro, 2001; Anderson & Osheroff, 2001; Dang *et al.*, 2007). Recently, as part of an ongoing study aimed to find potent and broad-spectrum antibacterial agents displaying strong Gram-positive activity, we have focused our attention on the synthesis of C-7 substituted quinolones (Wang *et al.*, 2008). We report here the crystal structure of the title compound, which is a key intermediate of 3-methoxyimino-4-amino-4-methylpiperidine.

In the molecule of the title compound (Fig. 1), the N1—C6 (1.352 (2) Å) and N3—C12 (1.323 (2) Å) bond lengths are significantly shorter than the normal C—N single bond (1.47 Å), indicating some conjugation with the C6=O2 and C12=O4 carbonyl groups, respectively. The six-membered piperidine ring adopts a boat conformation, with N1 and C3 displaced by 0.533 (2) and 0.632 (2) Å, respectively, from the mean-plane through C1, C2, C4 and C5. In the crystal structure, molecules are linked by intermolecular N—H···O hydrogen bonds (Table 1) to form a porous three-dimensional network with solvent-free hydrophobic channels extending along the *c* axis (Fig. 2).

Experimental

To a solution of ethyl *N*-Boc-3-methoxyimino-4-methylpiperidine-4-carboxylate (12.71 g, 40.5 mmol) in ethanol (50 ml) was added dropwise a solution of sodium hydroxide (2.75 g, 68.85 mmol) in water (5 ml) at room temperature. After stirring for 4.5 h, ethanol was removed under reduced pressure. After addition of water (20 ml), acetic acid (5 ml, 86.5 mmol) and triethylamine (17 ml, 122 mmol), the mixture was stirred for 10 min and extracted with CH_2Cl_2 (3 × 40 ml). The combined organic extracts were washed with saturated brine (3 × 20 ml) and dried over anhydrous sodium sulfate. The reaction mixture was then cooled to 259-261 K, and isobutyl chloroformate (13.1 ml, 101.8 mmol) was added. After 0.5 h, the reaction mixture was washed with 1 N HCl (4 × 20 ml) and saturated brine (4 × 40 ml), and dried over anhydrous sodium sulfate. The resulting yellow residue was purified by column chromatography, with petroleum ether/diethyl ether (3:1 v/v) as eluent to afford the title compound (4.92 g, 42.6%; mp: 140–142 °C). Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol/ethyl acetoacetate solution (1:1 v/v). ¹H NMR (CDCl₃, δ): 1.37-1.46 (12H, m, CH₃), 1.50-1.57 (1H, m, C₅), 2.43-2.49 (1H, m, C₅), 3.38-3.53 (2H, m, C₆), 3.89 (3H, s, OCH₃), 4.17-4.45 (2H, m, C₂), 5.57 (1H, br, CONH), 6.00 (1H, br, CONH). MS (ESI, m/z): 286 (M+1)⁺.

Refinement

All H atoms were placed at calculated positions, with C—H = 0.95–0.98 Å, N—H = 0.86 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C, N)$ or 1.5 $U_{eq}(C)$ for methyl H atoms. The crystal structure contains voids of about 105 Å³ connected to form channels along the *c* axis, which may accommodate solvent molecules. However, significant residual densities in the void could not be observed in the difference Fourier map.

Figures

Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2. Crystal packing of the title compound viewed along the *c* axis.

tert-Butyl 4-carbamoyl-3-methoxyimino-4-methylpiperidine-1-carboxylate

Crystal data	
C ₁₃ H ₂₃ N ₃ O ₄	Z = 16
$M_r = 285.34$	$F_{000} = 2464$
Tetragonal, $I4_1/a$	$D_{\rm x} = 1.206 {\rm ~Mg} {\rm m}^{-3}$
Hall symbol: -I 4ad	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
a = 22.813 (2) Å	Cell parameters from 3595 reflections
b = 22.813 (2) Å	$\theta = 2.5 - 22.6^{\circ}$
c = 12.0742 (16) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 293 (2) K
$\beta = 90^{\circ}$	Block, colorless
$\gamma = 90^{\circ}$	$0.48 \times 0.46 \times 0.45 \text{ mm}$
$V = 6283.8 (11) \text{ Å}^3$	
Data collection	
Bruker SMART APEX CCD	2763 independent reflections

diffractometer	2763 independent reflections
Radiation source: fine-focus sealed tube	1794 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.049$
T = 293(2) K	$\theta_{\rm max} = 25.0^{\rm o}$

φ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -27 \rightarrow 27$
$T_{\min} = 0.957, \ T_{\max} = 0.963$	$k = -27 \rightarrow 18$
16003 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.113$	$w = 1/[\sigma^2(F_o^2) + (0.0607P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
2763 reflections	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
181 parameters	$\Delta \rho_{min} = -0.12 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.38925 (6)	0.53733 (7)	0.27764 (13)	0.0504 (4)
N2	0.29390 (6)	0.58484 (6)	0.05570 (12)	0.0430 (4)
N3	0.41951 (6)	0.51996 (6)	-0.00791 (13)	0.0484 (4)
H3A	0.4432	0.4941	-0.0342	0.058*
H3B	0.3830	0.5189	-0.0253	0.058*
01	0.46173 (5)	0.48101 (5)	0.33671 (11)	0.0554 (4)
O2	0.37946 (6)	0.43856 (6)	0.26866 (13)	0.0694 (4)
O3	0.24359 (5)	0.55589 (5)	0.09853 (10)	0.0501 (4)
O4	0.49117 (5)	0.56448 (5)	0.08658 (12)	0.0570 (4)
C1	0.33172 (8)	0.54686 (10)	0.23109 (17)	0.0558 (5)
H1A	0.3080	0.5692	0.2828	0.067*
H1B	0.3126	0.5094	0.2189	0.067*
C2	0.33613 (7)	0.57937 (7)	0.12372 (14)	0.0400 (4)

C3	0.39477 (7)	0.60751 (7)	0.09840 (14)	0.0405 (4)
C4	0.41585 (8)	0.63467 (8)	0.20750 (15)	0.0502 (5)
H4A	0.4531	0.6541	0.1949	0.060*
H4B	0.3879	0.6642	0.2309	0.060*
C5	0.42325 (9)	0.58985 (8)	0.30031 (16)	0.0558 (5)
H5A	0.4643	0.5796	0.3074	0.067*
H5B	0.4105	0.6069	0.3698	0.067*
C6	0.40799 (8)	0.48163 (10)	0.29224 (16)	0.0503 (5)
C7	0.49544 (8)	0.42673 (9)	0.34839 (16)	0.0544 (5)
C8	0.50169 (11)	0.39737 (11)	0.2370 (2)	0.0890 (8)
H8A	0.4643	0.3824	0.2138	0.134*
H8B	0.5292	0.3657	0.2426	0.134*
H8C	0.5155	0.4254	0.1837	0.134*
C9	0.55329 (9)	0.44949 (10)	0.3911 (2)	0.0709 (6)
H9A	0.5703	0.4754	0.3372	0.106*
H9B	0.5794	0.4172	0.4041	0.106*
H9C	0.5471	0.4704	0.4590	0.106*
C10	0.46678 (10)	0.38805 (11)	0.4341 (2)	0.0861 (8)
H10A	0.4619	0.4096	0.5017	0.129*
H10B	0.4910	0.3544	0.4475	0.129*
H10C	0.4291	0.3755	0.4076	0.129*
C11	0.19775 (8)	0.55590 (9)	0.01807 (17)	0.0588 (6)
H11A	0.1818	0.5947	0.0115	0.088*
H11B	0.1674	0.5293	0.0408	0.088*
H11C	0.2132	0.5437	-0.0522	0.088*
C12	0.43929 (8)	0.56124 (7)	0.05932 (14)	0.0401 (4)
C13	0.39064 (9)	0.65416 (8)	0.00759 (16)	0.0529 (5)
H13A	0.3761	0.6366	-0.0593	0.079*
H13B	0.4288	0.6705	-0.0057	0.079*
H13C	0.3644	0.6847	0.0308	0.079*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0401 (9)	0.0565 (10)	0.0546 (10)	0.0059 (8)	-0.0052 (7)	0.0066 (8)
N2	0.0373 (9)	0.0459 (9)	0.0457 (9)	0.0019 (7)	0.0041 (7)	-0.0026 (7)
N3	0.0342 (8)	0.0456 (9)	0.0655 (11)	0.0027 (7)	0.0014 (7)	-0.0195 (8)
O1	0.0444 (8)	0.0558 (8)	0.0661 (9)	0.0102 (6)	-0.0121 (6)	0.0019 (7)
O2	0.0574 (9)	0.0617 (10)	0.0890 (11)	-0.0071 (7)	-0.0152 (8)	0.0097 (8)
O3	0.0346 (7)	0.0627 (8)	0.0529 (8)	-0.0010 (6)	0.0000 (6)	0.0073 (6)
O4	0.0338 (7)	0.0607 (9)	0.0766 (10)	0.0034 (6)	-0.0029 (6)	-0.0254 (7)
C1	0.0360 (11)	0.0753 (14)	0.0560 (13)	0.0088 (9)	0.0019 (9)	0.0136 (10)
C2	0.0345 (10)	0.0412 (10)	0.0442 (10)	0.0093 (8)	0.0030 (8)	-0.0041 (8)
C3	0.0398 (10)	0.0369 (10)	0.0447 (10)	0.0042 (8)	0.0025 (8)	-0.0042 (8)
C4	0.0525 (12)	0.0423 (11)	0.0559 (12)	0.0054 (9)	-0.0005 (9)	-0.0119 (9)
C5	0.0593 (13)	0.0571 (13)	0.0509 (12)	0.0100 (10)	-0.0094 (10)	-0.0106 (10)
C6	0.0433 (12)	0.0622 (14)	0.0453 (12)	0.0027 (10)	-0.0009 (9)	0.0055 (10)
C7	0.0512 (12)	0.0570 (13)	0.0549 (13)	0.0139 (9)	0.0011 (10)	0.0058 (10)

C8	0.0959 (19)	0.0966 (19)	0.0744 (17)	0.0334 (15)	-0.0017 (14)	-0.0162 (14)
С9	0.0470 (13)	0.0821 (16)	0.0837 (17)	0.0128 (11)	-0.0020 (11)	0.0093 (13)
C10	0.0726 (16)	0.0894 (18)	0.0962 (19)	0.0002 (13)	-0.0024 (14)	0.0364 (15)
C11	0.0409 (11)	0.0714 (14)	0.0641 (13)	-0.0025 (9)	-0.0097 (10)	0.0085 (11)
C12	0.0345 (10)	0.0393 (10)	0.0467 (11)	-0.0006 (8)	0.0024 (8)	-0.0035 (8)
C13	0.0551 (12)	0.0464 (11)	0.0571 (12)	0.0021 (9)	0.0057 (9)	0.0021 (9)
Geometric paran	neters (Å, °)					
N1—C6		1.352 (2)	C4—	H4B	0.97	00
N1—C1		1.444 (2)	С5—	H5A	0.97	00
N1—C5		1.453 (2)	С5—	H5B	0.97	00
N2—C2		1.272 (2)	С7—	C10	1.50	9(3)
N2—O3		1.4217 (17)	С7—	С9	1.50	9(3)
N3—C12		1.323 (2)	С7—	C8	1.50	9(3)
N3—H3A		0.8600	C8—	H8A	0.96	00
N3—H3B		0.8600	C8—	H8B	0.96	00
O1—C6		1.339 (2)	C8—	H8C	0.96	00
O1—C7		1.465 (2)	С9—	H9A	0.96	00
O2—C6		1.213 (2)	С9—	H9B	0.96	00
O3—C11		1.427 (2)	С9—	Н9С	0.96	00
O4—C12		1.2308 (19)	C10-	-H10A	0.96	00
C1—C2		1.497 (2)	C10–	-H10B	0.96	00
C1—H1A		0.9700	C10–	-H10C	0.96	00
C1—H1B		0.9700	C11–	-H11A	0.96	00
C2—C3		1.515 (2)	C11–	-H11B	0.96	00
C3—C13		1.531 (2)	C11–	-H11C	0.96	00
C3—C4		1.533 (2)	C13-	-H13A	0.96	00
C3—C12		1.539 (2)	C13–	-H13B	0.96	00
C4—C5		1.526 (3)	C13-	-H13C	0.96	00
C4—H4A		0.9700				
C6—N1—C1		118.66 (17)	01—	C7—C10	109.4	46 (16)
C6—N1—C5		125.56 (16)	01—	С7—С9	101.	60 (15)
C1—N1—C5		115.73 (16)	C10–	-С7-С9	110.2	25 (18)
C2—N2—O3		109.33 (14)	01—	С7—С8	109.3	82 (17)
C12—N3—H3A		120.0	C10-	-С7-С8	113.	l (2)
C12—N3—H3B		120.0	С9—	С7—С8	111.9	98 (17)
H3A—N3—H3B		120.0	С7—	C8—H8A	109.:	5
C6—O1—C7		121.90 (15)	С7—	C8—H8B	109.:	5
N2-03-C11		110.11 (13)	H8A-		109.:	5
N1—C1—C2		110.52 (15)	С7—	C8—H8C	109.:	5
N1—C1—H1A		109.5	H8A-	C8H8C	109.:	5
C2—C1—H1A		109.5	H8B-	C8H8C	109.:	5
N1—C1—H1B		109.5	С7—	С9—Н9А	109.:	5
C2—C1—H1B		109.5	С7—	С9—Н9В	109.:	5
H1A—C1—H1B		108.1	H9A-	—С9—Н9В	109.:	5
N2—C2—C1		123.83 (16)	С7—	С9—Н9С	109.:	5
N2—C2—C3		119.79 (16)	Н9А-	—С9—Н9С	109.:	5
C1—C2—C3		116.37 (15)	H9B-	—С9—Н9С	109.:	5

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
Hydrogen-bond geometry (Å, °)				
L0—IN1—L3—L4	130.72 (18)	C4—C3—C12—N3		130.31 (13)
$C_{12} - C_{3} - C_{4} - C_{5}$	-39.54(19)	C13 - C3 - C12 - N3		-83.25(19)
C13 - C3 - C4 - C5	-177.69 (15)	C2-C3-C12-N3		40.0 (2)
C2—C3—C4—C5	59.91 (19)	C4—C3—C12—O4		-26.3(2)
C1—C2—C3—C12	77.10 (19)	C13—C3—C12—O4		93.96 (19)
N2—C2—C3—C12	-103.77 (18)	C2—C3—C12—O4		-142.74 (17)
C1—C2—C3—C4	-41.54 (19)	C6—O1—C7—C8		56.1 (2)
N2—C2—C3—C4	137.60 (16)	С6—О1—С7—С9		174.80 (16)
C1—C2—C3—C13	-162.72 (16)	C6—O1—C7—C10		-68.6 (2)
N2—C2—C3—C13	16.4 (2)	C5-N1-C6-01		3.4 (3)
N1—C1—C2—C3	-13.5 (2)	C1-N1-C6-01		-179.54 (15)
N1—C1—C2—N2	167.35 (16)	C5—N1—C6—O2		-177.08 (19)
O3—N2—C2—C3	-178.79 (13)	C1—N1—C6—O2		0.0 (3)
O3—N2—C2—C1	0.3 (2)	C7—O1—C6—N1		-172.16 (15)
C5—N1—C1—C2	59.1 (2)	С7—О1—С6—О2		8.3 (3)
C6—N1—C1—C2	-118.26 (19)	C3—C4—C5—N1		-20.9 (2)
C2—N2—O3—C11	-173.54 (15)	C1—N1—C5—C4		-40.4 (2)
O1—C6—N1	110.60 (17)	H13B-C13-H13C		109.5
O2—C6—N1	124.14 (18)	H13A—C13—H13C		109.5
O2—C6—O1	125.26 (19)	C3—C13—H13C		109.5
H5A—C5—H5B	108.1	H13A—C13—H13B		109.5
C4—C5—H5B	109.5	C3—C13—H13B		109.5
N1—C5—H5B	109.5	C3—C13—H13A		109.5
C4—C5—H5A	109.5	N3—C12—C3		116.84 (15)
N1—C5—H5A	109.5	O4—C12—C3		120.75 (15)
N1—C5—C4	110.80 (15)	O4—C12—N3		122.35 (15)
H4A—C4—H4B	107.7	H11B—C11—H11C		109.5
C3—C4—H4B	108.9	H11A—C11—H11C		109.5
C5—C4—H4B	108.9	O3—C11—H11C		109.5
C3—C4—H4A	108.9	H11A—C11—H11B		109.5
С5—С4—Н4А	108.9	O3—C11—H11B		109.5
C5—C4—C3	113.25 (14)	O3—C11—H11A		109.5
C4—C3—C12	109.49 (14)	H10B-C10-H10C		109.5
C13—C3—C12	107.33 (14)	H10A—C10—H10C		109.5
C2—C3—C12	110.73 (13)	C7-C10-H10C		109.5
C13—C3—C4	110.71 (14)	H10A-C10-H10B		109.5
C2—C3—C4	105.95 (14)	C7-C10-H10B		109.5
C2—C3—C13	112.63 (14)	C7-C10-H10A		109.5

0.86

0.86

2.11

2.34

2.9607 (18)

3.1334 (19)

173

153

N3—H3B…O3ⁱⁱ Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *y*-1/4, -*x*+3/4, *z*-1/4.

N3—H3A…O4ⁱ

Fig. 1

